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Scaling of waves in the Bak-Tang-Wiesenfeld sandpile model
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We study probability distributions of waves of topplings in the Bak-Tang-Wiesenfeld model on hypercubic
lattices for dimensionsD>2. Waves represent relaxation processes which do not contain multiple toppling
events. We investigate bulk and boundary waves by means of their correspondence to spanning trees, and by
extensive numerical simulations. While the scaling behavior of avalanches is complex and usually not gov-
erned by simple scaling laws, we show that the probability distributions for waves display clear power-law
asymptotic behavior in perfect agreement with the analytical predictions. Critical exponents are obtained for
the distributions of radius, area, and duration of bulk and boundary waves. Relations between them and fractal
dimensions of waves are derived. We confirm that the upper critical dimensionDu of the model is 4, and
calculate logarithmic corrections to the scaling behavior of waves inD54. In addition, we present analytical
estimates for bulk avalanches in dimensionsD>4 and simulation data for avalanches inD<3. ForD52 they
seem not easy to interpret.

PACS number~s!: 05.651b, 05.40.2a
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I. INTRODUCTION

The sandpile model was introduced by Bak, Tang, a
Wiesenfeld ~BTW! @1# as a simple example of a slowl
driven dissipative system exhibiting self-organized critical
~SOC!. Although today many systems with SOC are know
it is considered as the prototype of such models, and the
a huge literature devoted to it. Its theoretical understandin
crucially related to Dhar’s discovery of its Abelian structu
@2#, which allows exact calculation of many of its properti
@3,4#. However, a complete analytical determination of t
scaling behavior of avalanches is still lacking. Several
proximation schemes, including a random-walk approa
@5#, diffusionlike analogy@6#, renormalization group@7,8#,
and a graph theory method@9# were proposed, but led to
different results. In addition, computer simulations — whi
first had suggested simple scaling behavior together w
standard finite-size scaling~FSS! — provide increasing evi-
dence that the avalanche statistics is much more complica
While most recent authors agree upon a breakdown of F
the detailed interpretation of their data is highly controvers
among different groups@10–13#.

The standard FSSAnsatzimplies an asymptotic form

Pa~a,L !;a2ta p~a/Lna! ~1!

for the distribution of the numbera of toppled sites in an
avalanche~in other words, its ‘‘area’’!, whereL is the size of
the lattice,p(z) is a universal function, andta and na are
critical exponents. This ansatz implies simple scaling of
moments ofa, ^an&;Lsn with sn5s01nna . Similar An-
sätzesshould, according to this view, hold for the number
topplings s ~which differs from a because sites can topp

*On leave from the Laboratory of Computing Techniques, JIN
Dubna, 141980 Russia.
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more than once in an avalanche! and for the radius and du
ration of avalanches. But recent investigations@10–12# show
that the two-dimensional BTW model may be characteriz
by a multifractal behavior where different moments ofa are
governed by exponentssn which are not linear inn and are
indeed not related to each other for differentn. Different
reasons for this have been proposed in@10,11# and in @12#.
Notice that multifractality of avalanches can be proven
certain variants of the one-dimensional sandpile model@14#.

Deviations from pure power laws had been seen alre
in early simulations, but were usually interpreted as fini
size effects due to avalanches which touch the boundar
the lattice. To illustrate that this is most likely not true, a
that there is a real problem with simple scaling, we show
Fig. 1 the ratioPs(x,L)/Pa(x,L) of the integrated distribu-
tions Ps(x,L)5*x

`dx8Ps(x8,L) for D52 and for different

,

FIG. 1. RatioPs(x,L)/Pa(x,L) of the integrateds anda distri-
butions for two-dimensional sandpiles. According to the genera
accepted FSSAnsatz, this should be a power law with exponen
ta2ts'0.02420.08 in the region where it is independent ofL. The
dashed line isx0.01.
81 ©2000 The American Physical Society
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values ofL. In these simulations, cylindrical boundary co
ditions were used~open at y56L/2 and periodic atx
50,L), and data were collected only for avalanches start
at y50. In this way we hope to have minimized bounda
effects. Also, since we do not make separate fits toPs(x,L)
and Pa(x,L), we have none of the uncertainties inherent
such fits. Due to Eq.~1!, we would expect this ratio to scal
as xta2ts for x!min$Lna,Lns%'L2. According to analytical
prediction@15# and recent large-scale simulations@12,13,16#,
the differenceta2ts should be in the range 0.024–0.08. T
behavior seen in Fig. 1 is rather different. Although t
curves for different largeL perfectly superimpose in a wid
range, in this range they are not straight at all~as expected
for a power law!, and their average slope in this univers
range is much smaller. Very small differencesta2ts have
been seen in several simulations using small lattices@17,18#.
But it still disagrees with our data showing a lack of scali
even for avalanches which do not reach the boundary of
lattice. Most other variables show similar deviations fro
pure power laws inD52 when scrutinized closely.

In principle, one can expect that these deviations of s
ing can be explained by assuming that the avalanche bo
ary advances like a pinned surface in a random medi
Unfortunately, this interpretation seems untenable. As sho
in @19# ~see also@20#!, avalanches proceed in distinctwaves
of topplings. In each wave, any site topples at most once
the original version of the model, waves overlap in time, b
they can be disentangled by a simple trick@19# so that at any
time only a single wave propagates. Therefore, if at all,
arguments associated with pinning effects should not ap
to boundaries of avalanches but to the propagation of w
boundaries, and they would suggest that waves show c
plex behavior~notice that boundaries of successive wav
are not simply related to each other@21#!.

But wavesdo behave simply, and do show simple scali
behavior. This is indeed the main message of the pre
paper. Our results extend analytical results derived
@19,22,23# and large-scale simulations made in@24,21#.
While the behavior of avalanches is complex and badly
derstood when typical avalanches are composed of m
waves~which is the case forD52 and, to a much less de
gree, forD53), the behavior of single waves is simple a
well understood.

In particular, we show in the present paper that F
works for waves of topplings. Since boundary avalanc
~i.e., avalanches which start from an unstable boundary s!
always consist of single waves@19#, it applies also to them
Using the spanning tree representation of waves, the equ
lence between spanning trees and loop-erased random w
and rigorous estimations for the latter, we determine
critical exponents of their probability distributions for all d
mensionsD>2. We also use the wave statistics to confi
recent numerical@25# and analytical@5,26# predictions for
the upper critical dimension of the BTW sandpile mod
The upper and lower bounds for logarithmic corrections
scaling for four-dimensional waves are determined anal
cally and confirmed numerically.

We discuss the possibility for investigation of avalanc
distributions of the BTW model using the results obtain
for waves. One of the key characteristics in this study is
average number̂nw&a of waves in avalanches of a give
g
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area a. Our simulations show that inD52 this number
grows, most probably, not slower than a power law with t
exponent 0.17~the first conjecture of@15# was 1/6, and an
analytical prediction of@9# is 1/4!. This means that multiple
topplings substantially change the scaling behavior of a
lanches in comparison to waves, which was indicated
many previous studies of the two-dimensional BTW mod

In D53, the fraction of avalanches containing more th
one wave is much less than in two dimensions. All accur
numerical estimations of the exponentta lead tota51.33,
which coincides with the exact exponent 4/3 for the wa
distribution, which could mean that the averaged numbe
waves in an avalanche inD53 grows not faster than loga
rithmically. On the other hand, considering the numeri
estimation of this number, we cannot exclude its slow po
nomial growth with the avalanche size. Then, the scal
behavior of avalanches could be corrected for the multi
topplings in large events, similar to the caseD52.

Finally, for D>4 the upper logarithmic bound for th
averaged number of waves in an avalanche@26# implies that
the distributions of avalanches obey asymptotic behav
with the same exponents as for waves.

This paper is organized as follows. In Sec. II we remi
the reader of basic definitions of the BTW model. Section
is devoted to detailed explanation of the construction
waves and their spanning tree representation. In Sec. IV
derive the critical exponents of wave distributions. In Sec
we discuss analytical results for the dynamical exponent
fractal dimension of waves. Results of computer simulatio
are presented in Sec. VI.

II. THE BTW MODEL

We consider theD-dimensional BTW model on a hyper
cubic lattice of linear sizeL in which integer variableszi
>0 represent local energies. One perturbs the system
adding particles at randomly chosen sites according to

zi ° zi11. ~2!

A site is called unstable if the corresponding energyzi ex-
ceeds the critical value 2D. An unstable site relaxes, its en
ergy is decreased by 2D, and the energy of the 2D nearest
neighbors~nn! is increased by 1:

zi→zi22D, ~3!

znn→znn11. ~4!

In this way, the neighboring sites may be activated and
avalanche of relaxations may proceed. If a boundary
topples, one or more particles leave the system. The a
lanche of relaxations stops when all sites are stable aga

One can introduce in a natural way different kinds
subavalanches, e.g., clusters of sites toppled not less th
given number of times@20# or waves of topplings@19#. A
relaxation event~an avalanche or subavalanche! is character-
ized by its sizes ~total number of topplings!, areaa ~number
of distinct toppled sites!, durationt ~number of parallel up-
date steps until stable configuration is reached!, and its ra-
dius r ~e.g., the radius of gyration or the maximal distan
between the origin and a toppled site!. The basic hypothesis
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of Bak et al. @1# claimed that in the self-organized critica
state the probability distributions of valuess,a,t,r exhibit
power-law behavior for intermediate values ofx,

Px~x!;x2tx, ~5!

with xP$s,a,t,r %.
As we have seen, this hypothesis might not be true

complete avalanches, but as we shall see it does hold
waves. Scaling relations for the exponentsts , ta , t t , andt r
can be obtained if one assumes that size, area, duration
radius of ‘‘typical’’ events scale as powers of each other,
instance

t;r g tr. ~6!

Then the transformation law of probability distribution
Pt(t)dt5Pr(r )dr leads to the scaling relation

g tr5
t r21

t t21
. ~7!

Again we should warn the reader that there is a crucial
sumption underlying these relations, namely that conditio
distributionsPx(xuy) are narrow, and therefore Eq.~6! holds
with small deviations for most events. It was proposed
@12# that this might not be justified inD52, and this is
indeed the main source of problems of this approach. Le
ignore this for the moment and proceed nevertheless.

The scaling exponentsgxx8 are important for the descrip
tion of the extent of avalanches and their propagation.
instance, the exponentgsa indicates if multiple toppling
events are relevant (gsa.1) or irrelevant (gsa51). The ex-
ponentgar relating the avalanche area to its radiusr equals
the fractal dimensionD f of the avalanche. Finally, the expo
nentg tr is usually identified with the dynamical exponentz.

If Eqs. ~5!–~7! are applied to waves, one has of cour
gsa51, butgar andg tr are non-trivial. Our main result state
that Eqs.~5!–~7! do indeed apply to waves, together with th
FSSAnsatzEq. ~1!.

III. WAVES OF TOPPLINGS AND THEIR SPANNING
TREE REPRESENTATION

Dhar proved@2# that all stable configurations can be cla
sified as either transient or recurrent. The former can oc
only during an initial transient period, but are irrelevant f
the infinite time dynamics. He also formulated the so-cal
‘‘burning algorithm’’ which, on the one hand, allows one
distinguish the recurrent states among all stable config
tions, and, on the other hand, can be used for constructi
spanning tree representation of any given recurrent state.
cording to this algorithm, which also proceeds in discr
time steps, any sitei is ‘‘burnt’’ at time t if its energyzi is
larger than the number of its unburnt nearest neighbor
time t21. In a stable configuration, only some of the boun
ary sites can satisfy this condition at the first step; they
be interpreted as origins of ‘‘fire.’’ Then the ‘‘fire’’ propa
gates if new sites become burnable at the second step. In
way, we burn the sites step by step, until no more sites
be burned. If all sites of the lattice are burned, the init
r
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configuration of energies is recurrent, otherwise it it tra
sient.

In order to obtain the spanning tree representation of
current configurations@15#, each burned sitei is connected
by a bond to one of the sites which had ‘‘set it afire,’’ i.e
which had caused its burning by burning itself. If there
more than one such site, one uses an arbitrary but definite
of rules where to place this bond. In addition, one introdu
a new siteh ~‘‘sink’’ ! and connects it to all boundary site
On these connections, bonds are placed to those sites w
burn att51. Then we can imagine the entire process start
by burning the siteh at time t50, and generating a roote
tree with root ath. If the state is recurrent, this tree spa
the entire lattice.

Majumdar and Dhar@15# also noticed that the condition
for ‘‘toppling’’ of a site is essentially the same as the cond
tion for ‘‘burning’’: At each step, the sitei topples if its
energyzi is larger than the number of those of its near
neighbors which had not toppled in the step before. The
fore, the burning of a recurrent state is equivalent to a t
pling process initiated ‘‘from the boundary.’’ It implies tha
if we add one particle to every boundary site~two particles
on each corner, etc.!, each site will topple exactly once dur
ing the ensuing avalanche.

The burning algorithm gives a one-to-one corresponde
between recurrent states and spanning trees. This allows
to calculate the total number of recurrent configurations,
energy probabilities, and the energy-energy correlation fu
tions @2–4,27#.

The spanning tree representation can be constructed
for a certain class of unstable configurations appearing d
ing an avalanche. It was shown in@19# that avalanches in the
BTW model can be decomposed into so-called ‘‘waves
topplings.’’ According to this construction, an avalanche
considered as a superposition of successive subavalan
After perturbing the system at a given lattice sitei, one al-
lows it to relax, but prevents the sitei temporarily from
toppling a second time. After this first ‘‘wave’’ all sites ar
again stable except, possibly, the sitei. If i is unstable, a
second wave is initiated by toppling it again. But a possi
third toppling is again delayed until this wave is finished, a
when it finally occurs it triggers the third wave. The proc
dure is repeated until the sitei is stable. Note that if the site
i is on the boundary, the avalanche stops after first relaxa
and consists of only one wave. More generally, if the d
tance ofi to the boundary isd, then any avalanche starting a
i can have at mostd11 waves.

To obtain the tree representation of a configuration f
lowing a wave which had started at sitei, we introduce an
auxiliary BTW model on a new lattice. In this lattice w
connecti to the sinkh. Since the sitei in the new model is
on the boundary, each avalanche starting at this site
consist of a single wave. Each avalanche in the auxili
model corresponds indeed to a wave of some avalanch
the original model. Applying the burning algorithm, we ca
construct a spanning tree on the auxiliary lattice represen
the recurrent state of the new model. During this burn
process, some branches of the fire will be independent of
i, but one branch will first pass fromh to i and then propa-
gate further. It is this latter branch which coincides with t
last wave of topplings in the original BTW model.
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Removing the bond betweeni andh we obtain two trees,
one having the root ati and the second at the sinkh. The
first tree represents the wave and the second one corresp
to the sites not toppled in this wave. The tree with the rooth
contains information about the configuration of stable s
not affected by the wave. We will call this union of two tre
which cover the entire lattice a spanning two-component
~or, simply, a spanning 2-tree!. According to this tree repre
sentation, waves with different configurations of untopp
sites are counted as different. An example of a spann
2-tree is shown in Fig. 2.

The rigorous proof of the above construction is given
@19#. A similar decomposition of avalanches into ‘‘invers
avalanches’’ was proposed by Dhar and Manna@22#.

An important fact concerning the wave statistics sho
be noted. Since all recurrent states of the auxiliary BT
model have equal probability of occurrence@2#, all waves in
the original BTW model are also equally likely.

IV. CRITICAL EXPONENTS AND GREEN FUNCTIONS

Using the graph representation of waves, we can exp
their probability distribution by the lattice Green functio
Consider avalanches initiated by adding a particle at the
i and spanning 2-trees with roots ati and h representing
waves of these avalanches. It was proven in@19# that the
Green functionGi j is related to the numberN(h)( i j ) of span-
ning 2-trees where the sitej is in the same component asi:

Gi j 5
N(h)( i j )

N(h)
, ~8!

whereN(h) is the total number of spanning trees with t
root at the siteh.

Consider avalanches initiated by adding a particle at
site i. Since every recurrent state together with the pertur
site i completely defines the relaxation process, the num
of different possible avalanchesN( i )

(a) started at fixed pointi

FIG. 2. Spanning 2-tree representation of a wave. Toppled s
are marked by heavy dots. The origin of the wave is marked b
circle. The dotted lines indicate the boundary of the system.
latter is considered as a single additional siteh, so that all non-
toppled sites form a single connected tree.
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equals to the number of recurrent states~or the number of
spanning treesN(h)). The numberN( i j )

(w) of different waves
started at the sitei and covering the sitej corresponds to the
numberN(h)( i j ) of two-rooted spanning trees having sitesi , j
on one of its components. We can therefore rewrite Eq.~8!
as

Gi j 5
N( i j )

(w)

N( i )
(a)

. ~9!

Equation~9! is another formulation of the known result o
Dhar @2# that the expected number of topplings at sitej due
to adding a particle at the sitei is given by the Green func
tion Gi j .

Due to uniformness of the wave statistics mentioned
the end of Sec. III, the probability that a waveW( i ) starting
at the sitei covers the sitej is equal to the fraction of wave
having this property:

P@ j PW~ i !#5
N( i j )

(w)

N( i )
(w)

, ~10!

whereN( i )
(w) denotes the total number of waves starting ati.

Combining Eqs.~9! and ~10!, we write

P@ j PW~ i !#5
N( i j )

(w)

N( i )
(a)

N( i )
(a)

N( i )
(w)

5
Gi j

Gii
5

G~r !

G~0!
, ~11!

where we use the notationG(r ) for the Green functionGi j if
the pointsi and j are separated by the distancer.

On the other hand, this probability can be represented

P@ j PW~ i !#5E
r

`

P(w)~R!rR~r !dR, ~12!

whereP(w)(R) is the probability that the linear extent of
wave isR, andrR(r ) denotes the density of sites covered
such a wave. The densityrR(r ) tends to 1 for largeR if
waves are compact and isotropic, and is a function ofr if
waves are fractal. Asymptotically forR@r , it varies as

rR~r !'r~r !;r df2D, ~13!

where df is the fractal dimension of waves andD is the
Euclidean dimension of the lattice.

Suppose that the probability distribution of the wave
dius r has a power-law asymptotics similar to that for av
lanches@Eq. ~5!#,

Pr
(w)~r !;r 2tr

(w)
. ~14!

Then, the probability distributionPr
(w)(r 8.r ) scales with the

exponentt r
(w)21. Using Eq.~13!, we get the asymptotic

behavior of the probability on the left-hand side of Eq.~12!,

P@ j PW~ i !#;r 2tr
(w)

111df2D. ~15!

The asymptotics of the bulk Green function~see, for in-
stance,@28#! are given by

es
a
e



re

lc

n
a

y

t

a
-

su
co
es
a

b

al
tion
tree

bic

he
the
Ma-
ing
ge
r

he
e-

ch
ith
it is
ess
t

ps
du-
l
al

ili-

of

PRE 61 85SCALING OF WAVES IN THE BAK-TANG-WIESENFELD . . .
G~r !;H ln r for D52

r 22D for D.2,
~16!

which reveals that the radius exponentt r
(w) for waves is

t r
(w)5df21. ~17!

Using Eq.~7!, we can derive the exponents of the wave a

ta
(w)522

2

df
~18!

and duration

t t
(w)511

df22

z
, ~19!

respectively.
For avalanches started at a distanceb from the boundary,

we need the boundary Green functions which can be ca
lated by the method of images:

G~r !;H lnur1bu2 lnur2bu for D52

ur2bu22D2ur1bu22D for D.2,
~20!

whereb is the vector perpendicular to the boundary. On a
‘‘equipotential’’ surface G(r )5const characterized by
length scalej and a volumea;jD, this boundary Green
function scales as

G;bj12D. ~21!

If we now replace Eq.~13! ~which is appropriate only for
isotropic cases! by its generalizationr;jdf2D, we arrive at
the exponents for waves starting near the boundary:

t r
(boundary)5df , ~22!

ta
(boundary)522

1

df
, ~23!

t t
(boundary)511

df21

z
~24!

@here and in the following we use superscript~w! for bulk
waves and (boundary) for boundary waves, and we use s
bols without superscripts for avalanches#. We see that both
the bulk and boundary wave exponents are determined by
scaling exponentsdf andz. The dynamical exponentz can be
related to the fractal dimension of the ‘‘chemical path’’ on
spanning tree@15# which, in turn, is equivalent to the dimen
sion of the loop-erased random walk~LERW! @29#. As to the
fractal dimension of wavesdf , it was proven for all dimen-
sions that a set of untoppled sites, which are completely
rounded by toppled sites, corresponds to a forbidden sub
figuration@20,17#. However, this fact does not prevent wav
from being fractal. They still could display either nonfract
or fractal behavior depending on the dimensionalityD. In the
next section, we will show thatdf is also closely related to
properties of LERW, more precisely to the intersection pro
ability between a LERW and a simple random walk.
a
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V. LOOP-ERASED RANDOM WALKS, DYNAMICAL
EXPONENT, AND FRACTAL DIMENSION OF WAVES

In this section, we derive analytical estimates for critic
exponents of waves using their spanning tree representa
and equivalence between a chemical path on a spanning
and LERW.

Consider an unrestricted random walk on a hypercu
lattice. The LERW introduced by Lawler@30# is obtained
from the simple random walk by deleting all loops along t
path. The chemical path between two sites of a tree is
unique path along the tree edges connecting these sites.
jumdar@29# has shown that the chemical path on a spann
tree is statistically equivalent to the LERW, i.e., the avera
distancer between the starting point and the position aftel
steps scales asr; l n with the same exponentn for both of
them.

In D52, the exponentn54/5 is known exactly from con-
formal field theory@31#. In D53, numerical estimates yield
n'0.616 @32,33#. In D54, which is the upper critical di-
mension for the LERW,n51/2 and the simple scaling law
has logarithmic corrections@34#. For D.4, the scaling be-
havior of the LERW and chemical paths is given by t
trivial value n51/2, as the effects of self-intersections b
come negligible above the upper critical dimension.

Returning to the BTW model, we notice that sites whi
topple at a given step of wave propagation coincide w
sites deleted at the same step of the burning process, if
started at the origin of the wave. Since the burning proc
generates a tree, there exists a unique path from the rooi of
the tree~the site where the wave is initiated! to one of the
last toppled sitesi f of the wave. The number of update ste
is given by the number of edges in this path. Thus, the
ration t of the wave is equal tol, the length of the chemica
path from i to i f on the tree, and, therefore, the dynamic
exponentg tr of waves is given byz51/n.

In order to find the fractal dimension of wavesdf , we use
the proposition proved in@26# For this we take a sitek at
distancer 5uk2 i u from i and a sitej at distanceR5u j 2 i u
.r , together with some pathsG( i , j ) connectingi with j and
G(k,h) connectingk with the sinkh ~see Fig. 3!. Then the
density of sites at distancer from i, in waves of radiusR
.r starting at sitei, is given by@26#

rR~r !5Pint~khu i j !, ~25!

wherePint(khu i j ) is the probability thatG(k,h) intersects
the pathG( i , j ), averaged over allj, all paths fromi to j, all
k, and allG(k,h).

Using the known estimations of the intersection probab
ties @34#, we can obtain from Eq.~25! the following upper
bounds.

For D.4, we have

r~r !5 lim
R→`

rR~r !<C1r 42D. ~26!

From Eq. ~13!, we can see that the fractal dimension
wavesdf<4 for all D>4.

For D54, the upper bound reads



th

r

s 4

nd

is
f

ica

s

nd

s
tios.
ew
is

eful
m

n,

n

er
to

rm

re

on
s

es

es
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rR~r !<C2

ln~11a!

ln r
, a5

R2

r 2 , ~27!

while a lower bound was obtained in@26#:

rR~r !>12C3

~ ln r !1/2

~ ln R!1/3
. ~28!

We can see thatrR(r ) approaches 1 whenR→`, r fixed.
The only fractal dimension which is consistent with bo
upper and lower bounds Eqs.~27! and~28! is 4, but there are
logarithmic corrections.

For D,4, the lower bound Eq.~28! becomes stronge
because of increasing intersection probabilityPint(khu i j ).
Thus, we conclude that the fractal dimension of waves is

df5H D for D<4

4 for D.4,
~29!

which means that the upper critical dimension for waves i
Therefore, we can calculate from Eqs.~17!–~19! and

~22!–~24! the exact values of all exponents for bulk a
boundary waves for all dimensionsD>2, with a single ex-
ception. This exception is the exponent of the duration d
tribution in D53, for which we need the value o
nLERW(D53), which is not known exactly.

VI. COMPARISON WITH NUMERICAL SIMULATIONS

A. D52

In this subsection we present the results of numer
simulations of bulk and boundary waves inD52. For these
the standard FSS works well. For any of the observablex
5a,t, andr it can be written as

Px~x,L !5L2bxgx~xL2nx!, ~30!

FIG. 3. A sketch of a wave initiated at the sitei and containing
the site j. The chemical path between the two sites on the t
representing the wave isG( i , j ). The second pathG(k,h) corre-
sponds to a random walk which starts at the sitek and escapes the
pathG( i , j ) until it is trapped at the sink.
.

-

l

with bx5txnx @35#.
The functionsgx(z) should be universal~i.e., they should

not depend on the type of lattice!. But for large values ofz
they do depend on the type of boundary conditions~open on
all four sides or cylindrical, i.e., open in one direction a
periodic in the other! and on the aspect ratio~square or rect-
angle with sidesL1ÞL2). We verified that the exponent
were independent of boundary conditions and aspect ra
We verified also that all results were unchanged if we thr
in the sand grains with nonuniform density, provided th
density was everywhere nonzero. The latter was very us
since it allowed us to obtain much improved statistics fro
either the boundary or the central region.

Sincedf52 for D52, one hasna5df52 andn r51, and
thereforenx5gxr @36#. The results of the preceding sectio
together withn t5z51/nLERW55/4, give

ba
(w)52ta

(w)52,
~31!

b t
(w)5zt t

(w)55/4

for bulk waves and

ba
(boundary)52ta

(boundary)53,
~32!

b t
(boundary)5zt t

(boundary)59/4

for boundary waves.
The finite-size scaling plot for the area distributio

Pa
(w)(a) of bulk waves inD52 is shown in Fig. 4. In the

inset of this figure, as well as in the insets of plots for oth
distributions of waves, we show the collapses according
the Ansatzof Eq. ~1!. Taking ba

(w)52 anddf52, we see a
perfect data collapse. The finite-size scalingAnsatzof the
duration distribution is plotted in Fig. 5. These data confi

e

FIG. 4. Finite-size scaling plot of the wave area distributi
Pa

(w)(a) for bulk waves inD52. The perfect data collapse show
thatdf52 andba

(w)52, as predicted analytically. The dashed lin
represent power laws with exponentsta

(w)51. The factor lnL
comes from the normalization of the distributions. The inset verifi
the scalingAnsatzEq. ~1!.
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that waves are not fractal, and that their duration is as p
dicted by the correspondence with spanning trees and lo
erased random walks.

As was mentioned above, the avalanches started at
boundary consist of a single wave, so for this type of a
lanche the distribution of avalanches coincides with that
waves. The finite-size scaling plots for the area and dura
distributions for boundary waves are shown in Fig. 6 a
Fig. 7, respectively. Again all predictions are verified,
particular we see thatdf52, i.e., also boundary waves a
not fractal inD52.

Finally, let us consider avalanches starting at a finite d
tance from the boundary. The crossover from the bound
to bulk behavior of the wave distribution should be describ
by Eq. ~20!. More precisely, the equipotential surfaces inD

FIG. 5. Finite-size scaling plot of the wave duration distributi
Pt

(w)(t) for bulk waves inD52. Here, the data collapse is achiev
with b t

(w)5n t
(w)55/4, which confirms again Eq.~31!. The dashed

lines represent power laws with exponentst t
(w)51. Here, the nor-

malization factor lnL is also needed.

FIG. 6. Same as Fig. 4, but for boundary waves inD52. Again
the data collapse is obtained with the predicted valuesba

(boundary)

53 anddf52. The dashed lines correspond tota
(boundary)53/2, as

predicted theoretically.
e-
p-

he
-
f
n

d

-
ry
d

52 are circles@28# with radius j and G; ln@(b2/j211)1/2

2b/j#. In the scaling region wherer(j)51, we have there-
fore Pa

(w)(aub)52(da/dj)21dG/dj, which gives

Pa
(w)~aub!;

b

aAa1pb2
;H b/a3/2 for a.pb2

1/a for a,pb2.
~33!

To check this, we simulated the BTW model with cylindric
boundary conditions, and collected data for waves starte
distanceb from the open boundary. The results are plotted
Fig. 8. For smalla we see indeed the bulk behavior whic
crosses over to the boundary behaviora23/2 for b2,a
,L2. In the latter region we also see clearly the linear d
pendence onb.

The above shows that our understanding of waves in
2D BTW model is basically complete. In contrast, and
spite of numerous efforts, the scaling behavior ofavalanches
in the two-dimensional BTW model is still an open problem
This is due to multiple topplings. The average number
waves in an avalanche scales as@2#

^n&; ln L. ~34!

There are also several results known about correlations in
sizes of successive waves@9,21,37,38#. Nevertheless, even
the most basic questions such as the distribution ofn or the
dependence ofn on the areaa are not yet solved.

Equation~34! would be most easily explained ifPn(n)
were simply;1/n2. Present data seem to agree with this
the largest lattices~Fig. 9!, but actually the data are bette
fitted with a power 1/n2.1 than with 1/n2 ~see inset!. Similar
results are obtained for̂n&a , the average number of wave
in avalanches with fixeda ~Fig. 10!. Although they seem to
scale like a power ofa, as assumed in@15#, a closer study
shows significant deviations which seem hard to explain
finite-size effects.

FIG. 7. Same as Fig. 5, but for boundary waves inD52. Again
the data collapse is obtained with the predicted valuesb t

(boundary)

59/4 and n t
(w)55/4. The dashed lines correspond tot t

(boundary)

59/5, as predicted theoretically.
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There are several recent papers@10,39# which try to ex-
plain these problems by unexpected features of avalan
which reach the boundary. But data such as those show
Figs. 1 and 10 indicate that there are already problems w
avalanches which do not reach the boundary.

B. D53

Simulations of waves of the BTW model inD53 also
give good agreement with our analytical results of Secs.

FIG. 8. Area distributions of waves initiated at different di
tancesb from the boundary for a system of size 25631024. Each
curve is averaged over approximately 106 avalanches. The dashe
lines correspond to the bulk (ta

(w)51) and boundary (ta
(boundary)

53/2) scaling behavior, respectively. The distributions are mu
plied by b21N(b),N(b)5*Pa

(w)(aub)da in order to have the
curves collapsing for largea. Inset: the rescaled distributions fo
b58,16,32,64 demonstrate that the crossover from bulk to bou
ary behavior takes place at values of area of orderb2.

FIG. 9. Probability distribution of the number of wavesn in an
avalanche forD52. The dashed line corresponds to the power-l
behaviorPn(n);n22 as predicted in@15#. The data were collected
from avalanches initiated at the center region of the square la
with cylindrical boundaries. The inset shows the same data m
plied by n2. There, the dashed line is}n20.1.
es
in

th

V

and V. For bulk waves we now haveba
(w)54, ta

(w)

54/3, b t
(w)51/nLERW11'2.623, and t t

(w)511nLERW

'1.616. For boundary waves, the corresponding numb
are ba

(boundary)54, ta
(boundary)55/3, b t

(boundary)51/nLERW12
'3.623, andt t

(boundary)5112nLERW'2.232. For theseb
values, the data collapses of bulk~Figs. 11 and 12! and
boundary~Figs. 13 and 14! waves are perfect. They confirm
also the analytical predictions for thet exponents, verifying
in particular that the waves have fractal dimensiondf53.

Due to the rarity of multiple topplings, avalanche dist
butions coincide within the displayed accuracy with wa
distributions, when plotted as in Fig. 11 and Fig. 12. In ord

-

d-

ce
i-

FIG. 10. Average number of waves^n&a as a function of the
avalanche areaa for D52 and various system sizesL. Although the
main figure looks straight at first, the inset displaying the resca
average shows significant deviations from the assumed pure po
law behavior @15#. The data were collected from nondissipativ
avalanches initiated at the center region of the square lattice
open boundaries. Thus the curvature seen in the inset cannot c
from avalanches reaching the boundary.

FIG. 11. Finite-size scaling plots of the area distributi
Pa

(w)(a) for bulk avalanches inD53. Assuming compact ava
lanches (df53) we get good data collapses and the resultingta

(w)

exponent agrees with the theoretical prediction~dashed lines!.
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to show significant results for multiple topplings, we have
present the data differently. In Fig. 15 we plotted the aver
number of waves at fixeda, ^n&a , against lna. Neither using
a logarithmic scale for̂n&a ~main figure! nor a linear scale
~inset! give perfectly straight lines. Thus the data can
interpreted either as a power law with a very small expone

^n&a;aa, a'0.06 ~35!

or as a logarithmic growth.
In the latter case, we would of course haveta

(w)5ta

5ts . In the opposite case of a power law with exponena
'0.06, we can give crude estimates for the differences
tween theset exponents, using some heuristic assumptio

The first assumption is that different waves in the sa
avalanche involve essentially the same sites. If this is t

FIG. 12. Finite-size scaling plots of the duration distributi
Pt

(w)(t) for bulk avalanches inD53. Using compact avalanche
(z51/nLERW) we get good data collapses and the resultingt t

(w)

exponent agrees with the theoretical prediction~dashed lines!.

FIG. 13. Finite-size scaling plots of the area distribution
boundary waves inD53. The data collapses confirm againdf

53, and the dashed line demonstrates the agreement with the
dicted value forta

(boundary).
e

e
t,

e-
.
e
e,

we should havePa
(w)(a)da'^n&aPa(a)da. Using this to-

gether with Eq.~35!, we find ta54/31a'1.39. Since the
basic assumption here is most likely not justified, this is o
a very crude@and most likely too large, in particular sinc
the growth of^n&aPa(a)da could be logarithmic# estimate
for the difference betweenta andta

(w) .
An estimate for the difference betweenta and ts is ob-

tained as follows. An upper bound for the size of an av
lanche of areaa containingn waves iss,na. Therefore, the
assumptions;^n&aa leads to the maximal difference be

re-

FIG. 14. Finite-size scaling plot of the duration distributions f
boundary waves inD53. The data collapses confirm againz
51/nLERW , and the dashed line demonstrates the agreement
the predicted value fort t

(boundary).

FIG. 15. Average number of waves^n&a as a function of the
avalanche areaa for D53 and various values of the system sizeL.
In order to minimize finite-size effects, cylindrical boundary cond
tions with one open and two periodic directions were used
one-half of all sand grains were thrown onto the central planey
5L/2 andy5L/211. The y axis is logarithmic in the main plot
and linear in the inset. Neither way of plotting gives perfec
straight lines in the region where that data for differentL collapse.
Although the main figure looks more straight at first sight, a mo
careful inspection shows a slight downward curvature.
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tween the area and size exponents. Using Eq.~35! we get
a*s1/(11a). Then, Eq.~7! gives (ts21)>(ta21)/(11a)
and we can conclude that

ta2ts<
a

11a
~ta21!<0.02. ~36!

A direct verification of such slight differences between thet
exponents could be tried by plotting ratios of the distrib
tions, as was done in Fig. 1 forD52. We do not show any
such ratio here, since they are all very close to 1 in the reg
where the distributions should follow power laws, and t
deviations from 1 seem not to be simple powers.

C. D54

As the dimension of the BTW model increases, multip
toppling events in avalanches become more and more
For D>4 it was shown in@26# that ^n&a grows not faster
than logarithmically, i.e.,a50. As we already mentioned in
the preceding subsection, this meansta

(w)5ta5ts , i.e., the
scaling behavior of waves and avalanches inD54 is char-
acterized by the same exponents and scaling functions.

At the upper critical dimensionDu54, logarithmic cor-
rections to the simple scaling are essential. The probab
distributions of the radius, duration, area, and the sca
relations between them are expected to have the form~cf.
@25#!

Pr~r !;
~ ln r !xr

r 3
, Pt~ t !;

~ ln t !xt

t2
, Pa~a!;

~ ln a!xa

a3/2
,

~37!

and

a;
r 4

~ ln r !Na
, t;

r 2

~ ln r !Nt
, ~38!

respectively.
The exponents of logarithmic correctionsxr , xa , xt , Na ,

andNt obey the scaling relations@25#

xr5xa1Na/2, xr5xt1Nt , ~39!

which follow straightforwardly from Eqs.~37! and ~38!.
Using arguments similar to those at the end of the prec

ing subsection, we obtain an inequality for the exponents
logarithmic corrections for waves and avalanches,

xa
(w)5xa<xs . ~40!

This allows us to compare below analytical estimations
waves with numerical results for avalanches.

It follows from Lawler’s results@34# discussed in Sec. V
thatNt51/3 exactly. But as with all logarithmic correction
a numerical verification is not easy. The main reason is
the logarithms are never very much larger than 1, even
the largest simulations. Therefore, the next-to-leading te
~which are typically suppressed by powers of the same lo
rithms! are in general not negligible. In view of this, th
disagreement with recent simulations@25# which had sug-
gestedNt'1/2 should not be taken seriously. Data for t
-

n

re.

ty
g

d-
f

r

at
r
s

a-

mean-squared radius of avalanches with fixed durationt are
shown in Fig. 16. More precisely, since we expect

^r & t
2

t
;~ ln t !1/3, ~41!

we plotted @^r & t
2/t#3 against lnt. Apart from very larget

when the finiteness of the lattice makes itself seen, we
serve essentially a straight line~which is a bit fortuitous
since there are also 1/t corrections which are important fo
small t). At the same time, a power-law dependence^r & t

2

;t2n with n.1/2, as would be expected ifDc.4, seems
ruled out.

For the other exponentsxr ,xa ,xt ,Na we can only give
inequalities from the analytical results of Sec. V. The upp
bound Eq.~27! for the density of waves leads to the relatio

r~r !;~ ln r !2d, d>1. ~42!

Using this asymptotics and Eq.~11!, we get

Pr
(w)~r !;G~r !/r~r ! ;

~ ln r !d

r 3
, ~43!

which givesxr5d. The areaa of a wave scales in leading
order as

a;E
1

r

r~r 8! r 83 dr8;
r 4

~ ln r !d
, ~44!

giving Na5d. Hence, from Eq.~39! we have

xa5d/2> 1
2 . ~45!

In order to verify these predictions — and to verify, in th
first place, that deviations from power laws with the mea
field exponentst r53,t t52,ta5 3

2 cannot be eliminated by
changing these exponents — we performed extensive si
lations. Numerical data of the size distributionPs(s) are

FIG. 16. The gyration radius of avalanches as a function of th
duration. We plot the sixth power of the average rescaled gyra
radius,@r g

2t21#3, in a logarithmic diagram, since this should resu
in a straight line according to Eq.~41!. Such a linear regime is
indeed observed~dashed line; its slope and intercept are not p
dicted by theory!, and it increases with the system sizeL.
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shown in Fig. 17. Lattice sizes range fromL532 to L
5144. After multiplying withs3/2, we see indeed no indica
tion that the remainings dependence follows a clean pow
law. In order to find the expected logarithmic corrections,
multiplied these data by (lns)xa, with several trial values for
the exponentxa . Taken at face value, this would give be
fits with xa'0.25. In view of inequality~39! and of the
difficulties in obtaining correct logarithmic corrections me
tioned above, we propose that indeedxa5 1

2 . From the rela-
tions Eq.~39! we get thenxr5Na51 andxt5

2
3 .

VII. CONCLUSIONS

We have studied probability distributions of waves of to
plings in the BTW model onD-dimensional rectangular lat

FIG. 17. Area distributions for avalanches inD54. In order to
render the plots more significant, first of all the dominants depen-
dence was removed by multiplying withs3/2. Then, in order to
check whether the remainings dependence in the scaling region
compatible with logarithmic corrections as proposed in Eq.~37!, we
also divided by powers (lns)x and shifted the resulting curves hor
zontally and vertically in order to avoid overlaps. The best agr
ment is found withx'0.25.
ied

et

s.
e

-

tices for D>2. We have proved analytically that waves
well as boundary avalanches do exhibit critical behavior a
that their probability distributions display power-law asym
totics. We have derived exact values of critical exponents
these distributions. We have proven analytically that the
per critical dimension of the BTW model isDu54, showing
that previously observed deviations from mean-field beh
ior at D54 @17,40# are due to logarithmic corrections. A
these results have been confirmed by extensive nume
simulations. During these simulations we have also verifi
that wave distributions follow the standard finite-size scal
Ansatz. The exponent of the leading logarithmic correction
the distribution of avalanche lifetimes~or, more precisely,
lifetimes of waves! has been derived exactly from the know
asymptotics of loop-erased random walks. Estimations
given for the exponents of the logarithmic corrections to
other distributions.

We therefore have now a rather complete picture of
dynamics of single waves in the BTW model for all dime
sions. ForD>4 this means that we also understand a
lanche dynamics, since multiple topplings are so rare t
they can be neglected. ForD52, the latter is certainly not
true, and our understanding of avalanche dynamics is
incomplete. ForD53, finally, multiple topplings represent
small but not negligible effect, and we have hope that
problem will be solved soon.
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